Fiapo de Jaca » Escolar » Cálculo do comprimento de uma onda

Cálculo do comprimento de uma onda

Aprenda nesse artigo como calcular o comprimento de uma onda de acordo com as relações associadas a questão física eletromagnética ou sonora.

     

O comprimento de onda (seja ela eletromagnética ou sonora) é caracterizado pela variação da distância que se articula entre os valores contínuos existentes em uma ou mais ondas. Geralmente elas são representadas entre vales (mínimos), picos (máximos) e/ou duas vezes a distância entre nós.

Sua atuação é exibida pela letra grega lambda (λ). As unidades que são encontradas nas expressões das velocidades e frequências são m/s (metros por segundo) e Hz (Hertz), caso esses dados se manifestem em km/s ou Kilohertz, a conversão dos números deverá ser executada para que o cálculo se torne preciso e mais fácil.

Fórmula geral

λ = c/f

Onde:

» λ: Comprimento de Onda;
» c: Velocidade da Onda (m/s);
» f: Frequência (Hz).

Comprimento da onda

Tendo em mente a fórmula correta, basta apenas interpretar a questão e substituir as quantidades informadas dentro da equação.

Exemplo: Informe o comprimento de uma onda que viaja à 50 m/s numa frequência de 3 Hz.

» λ = c/f
» λ = 50 (m/s)/3Hz
» λ = aproximadamente 16,66 metros.

Velocidade da onda

Assim como na amostra disponibilizada acima, para saber qual a velocidade em que determinada onda se encontra, basta apenas manipular a substituição dos valores encontrados na questão.

Exemplo: Encontre a velocidade de uma onda com frequência de 3 Hz e comprimento 50 m.

» λ = c/f
» 50m = c/3Hz
» 50m*3Hz = c
» c = 150 m/s.

Frequência

Para achar o valor da frequência, manipule os dados dentro da fórmula de acordo com os dados disponibilizados na questão.

Exemplo: Informe a frequência de uma onda que viaja com velocidade 50 m/s e um comprimento de 3m.

» λ = c/f
» 3m = 50 (m/s)/f
» 3m/50 (m/s) = f
» f = 0,06 Hz.

Observação

Dentro dessa conceituação da física, podemos encontrar situações em que a propagação da onda se articulará com meios materiais e as superposições das cores, através das Leis de Descartes e Snell. De acordo com as tonalidades fornecidas pelo espectro visível, veja abaixo qual a relação de alguns comprimentos de onda relacionadas com algumas cores:

» Amarelo: ~ 565-590 nm.
» Azul: ~ 440-485 nm.
» Ciano: ~ 485-500 nm.
» Laranja: ~ 590-625 nm.
» Verde: ~ 500-565 nm.
» Vermelho: ~ 625-740 nm.
» Violeta: ~ 380-440 nm.

Saiba Mais:


Quer comentar ?